Expand each of the following, using suitable identities : $(-2 x+3 y+2 z)^{2}$
$(-2 x+3 y+2 z)^{2}$
Using $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x,$ we have
$(-2 x+3 y+2 z)^{2} =(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+2(-2 x)(3 y)+2(3 y)(2 z)+2(2 z)(-2 x)$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 z x $
Find the value of each of the following polynomials at the indicated value of variables : $q(y)=3 y^{3}-4 y+\sqrt{11}$ at $y=2$
Factorise : $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $x^{2}+x$
$(ii)$ $x-x^{3}$
$(iii)$ $y+y^{2}+4$
Factorise each of the following : $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$
Find the zero of the polynomial : $p(x) = x + 5$